Efficient quadrature rules for subdivision surfaces in isogeometric analysis
نویسندگان
چکیده
منابع مشابه
Efficient quadrature for NURBS-based isogeometric analysis
We initiate the study of efficient quadrature rules for NURBS-based isogeometric analysis. A rule of thumb emerges, the “half-point rule”, indicating that optimal rules involve a number of points roughly equal to half the number of degrees-of-freedom, or equivalently half the number of basis functions of the space under consideration. The half-point rule is independent of the polynomial order o...
متن کاملDispersion-minimizing quadrature rules for C quadratic isogeometric analysis
Dispersion-minimizing quadrature rules for C quadratic isogeometric analysis Quanling Deng, Michael Bartoň, Vladimir Puzyrev, Victor Calo aDepartment of Applied Geology, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia bBasque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain cMineral Resources, CSIRO, Kensington, Perth, WA 6152, Aust...
متن کاملOn Isogeometric Subdivision Methods for PDEs on Surfaces
Subdivision surfaces are proven to be a powerful tool in geometric modeling and computer graphics, due to the great flexibility they offer in capturing irregular topologies. This paper discusses the robust and efficient implementation of an isogeometric discretization approach to partial differential equations on surfaces using subdivision methodology. Elliptic equations with the Laplace-Beltra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2018
ISSN: 0045-7825
DOI: 10.1016/j.cma.2018.05.017